
Realtime Onboard Dense RGB-D Mapping on UAVs

Ayush Gupta
ayushgup@iitk.ac.in

Abstract— Dense RGB-D map of environments have ap-
plications in aerial drone navigation, robotic manipulation,
reconnaissance operations and semantic mapping. This map-
ping process is quite computationally expensive, with the main
bottleneck being the generation of point clouds from the visual
inputs. We have made use of both Monocular Cameras and
RGB-D cameras for evaluating the feasibility and accuracy of
the systems, while noting the processing speed of the entire
system, accounting for the less computational power present
on an aerial drone due to its scarce size and energy resources.

I. INTRODUCTION

In recent times, 3D reconstruction and mapping using
unmanned aerial vehicles (UAV) have gained a lot of in-
terest in the robotics community. In comparison to ground
vehicles, UAV are more versatile in their ability to reach
inaccessible places more quickly and efficiently. With on-
board cameras, the UAVs can take aerial images during
flight, which can be used to process 3D maps of the entire
environment as it progresses. This mapping procedure can
then be used for localization, and even extended to the
Simultaneous Mapping and Localization (SLAM) Problem.
Being capable of 3D SLAM means that a drone can easily
capture a detailed understanding of the world around it,
which points to new opportunities in autonomous navigation
that can be made available to any developer.

The following sections are organized as follows, where we
first present related works in the fields of 3D Reconstruction
using optical sensors, and the general techniques and work
flow of visual mapping and SLAM problems. Next, we
present the hardware configurations, followed by the various
methods we evaluated for their consistency and speed. Then
we present the real time on-board results, which are finally
followed by the conclusion, limitations and current status of
work.

II. LITERATURE REVIEW

There are numerous publications relating to 3D recon-
struction and mapping, with the majority of them focusing
on using depth cameras for better per-pixel depth informa-
tion. Due to hardware constraints, we first focused on using
a monocular camera to create depth point clouds, and then
further use them to create entire maps across a larger area.

Matia Pizzoli, et al. presented REMODE, where they
estimated dense and accurate depth maps from a single
moving camera. Probabilistic depth measurement on a per-
pixel basis and it used a Bayesian estimation for rejecting
erroneous estimations using the computer uncertainty. A real
time implementation was provided by them, which has a
CUDA-based implementation running at 30 Hz on a laptop
computer.

Fig. 1: Surface elevation mapping using REMODE

We also tried using two Monocular cameras in a stereo
pair, and tried generating disparity maps after calibrating
them. For this, we reviewed the basics of epipolar geometry,
triangulation techniques, feature matching and disparity map
generation. ETH-Z provided an open-source calibration tool,
Kalibr which provided with multiple-camera calibration in
addition to IMU-camera calibration. Stereo-block matching
technique is generally used for creating disparity maps from
a pair of images. The frames from the two cameras should
be time-synchronized, which provides consistency to the
feature matching technique, especially if the camera is not
stationary.

Our final conclusion was to use RTAB-Map (Real-Time
Appearance-Based Mapping). This is a RGB-D, Stereo and
Lidar Graph-Based SLAM approach based on an incremen-
tal appearance-based loop closure detector. The loop closure
detector uses a bag-of-words approach to determinate how
likely a new image comes from a previous location or a new
location. When a loop closure hypothesis is accepted, a new
constraint is added to the maps graph, then a graph optimizer



Fig. 2: Multi-level 3D RGB mapping using RTAB-Map

Fig. 3: RTAB-Map with failed loop closure

minimizes the errors in the map. A memory management
approach is used to limit the number of locations used
for loop closure detection and graph optimization, so that
real-time constraints on large-scale environments are always
respected.

The recent increase in deep learning methods for prob-
lems in computer vision has resulted in development of
many networks which are able to predict depth from monoc-
ular cameras as well as estimate the optical flow from a
video feed.

III. CONSIDERATIONS AND AIMS

Since our goal to map the 3D environment is quite
difficult, in terms of computation power as well as result,
we tried to solve the problem with a focus on the processing
required by the algorithm, as well as the final resolution and
detail of the map which could be achieved.

We aimed to achieve as high frame rate as possible with
the entire system running on the onboard computer. The
mapping procedure can be slow, since we can then make
any controller make its way through the environment by
giving it a path. Also, we tried to make sure there are not
a lot of errors due to back projection from the camera, or

having a lot of scale drift at different distances which would
make ruin the map for us.

IV. HARDWARE CONFIGURATION

Most of the techniques have been tested on an 8th Gen
Intel Core i7-8550U processor, with 8 GB of DDR4 RAM.
The laptop has an entry-level Nvidia 940MX GPU, with
CUDA and CUDNN installed on a Ubuntu 16.04 Xenial
setup. Robot Operating System (ROS) was used as a mid-
dleware, and many open-source and publically availbable
codes were tried and tested on this laptop. We used a pair
of Logitech C930e webcams, with the framerates fixed at
30 FPS or 15 FPS.

Later in the project, we recieved a Stereolabs ZED
Camera, which was a RGB-D camera which can capture
depth at resolutions up to 2.2k and frame rate up to 120
FPS, with the computation being done on the Graphical
Processing Unit of the computer to which the camera is
attached.

Fig. 4: Stereolabs Zed Camera

For onboard implementations, we had been provided with
a Nvidia Jetson TX2, built around an NVIDIA Pascal-family
GPU and loaded with 8GB of memory and 59.7GB/s of
memory bandwidth. It was mounted on a ConnectTech Astro
Carrier, replacing the bulkier Nvidia TX2 Developer Kit,
while providing with a reasonable number of serial ports in
a small size. We also had access to a Pixhawk Cube which
was used to record the odometry messages generated using
its inbuilt IMU.

V. IMPLEMENTATIONS AND FINDINGS

From the initial phase of the project, we did a lot of
literature review, and implemented these techniques on real
data captured from the Helicopter Lab. Here, we present the
methods and implementations in a chronological fashion,
since the start of the project.

In the initial phase of the project, we first tried to
calibrate the two separate cameras as a stereo camera. This
mainly consisted of finding the intrinsic parameters of the
camera, as well as the baseline shift while considering the
cameras together. The intrinsic parameters were first found
out from the internet, which resulted in a huge amount of



re-projection error. Then, we used the Kalibr toolset for this
calibration. We created rosbag files infront of a AprilTags
setup, and the Kalibr toolkit itself uses many rounds of
iterations for decreasing the value of the re-projection error.
We had assumed the Pinhole model for the camera, as it
easily works for most off-the-shelf webcams.x
y
w

 =

fx 0 cx
0 fy cy
0 0 1

XY
Z


The unknown parameters are fx and fy (camera focal
lengths) and (cx,cy) which are the optical centers expressed
in pixels coordinates.

These intrinsic parameters were used to rectify the im-
ages, and this was further passed to the stereo proc pipeline
to create a disparity map using the stereo-block match-
ing techniques. This algorithm requires manual tuning of
parameters which control how much it should difference
in disparity is necessary for the algorithm to consider it
as a pixel of different depth. This adjustment was very
difficult, and we tried out many different open-source ROS
packages in order to achieve better disparity map generation.
Researching further, we found out that the video stream from
the two cameras should be frame wise time synchronized, or
else the disparity map generation fails due to poor feature
matching performance. Better cameras allow for external
triggering of the webcams, to restart the stream, but these
webcams did not support the feature. We tried creating
a driver for this using OpenCV, but it caused a major
drop in the frame-rate and still the images were not quite
synchronized due to different machine clocks.

Fig. 5: Indoor 3D Mapping using REMODE and ORB-
SLAM

Since we could not create a usable depth-map from
this method, we switched to using monocular camera for

this depth mapping. We created a pipeline for this using
ORB-SLAM and REMODE. The open-source REMODE
repository does not support RGB-point cloud generation,
and thus we modified both ORB-SLAM and REMODE for
handling RGB-pointclouds. We used the intrinsic parame-
ters calculated earlier for this camera, and performed this
implementation.

The results were great for an indoor room, where we
could view an object from multiple perspectives and since
REMODE is a probabilistic framework, we could compute
with more certainty the depth of each particle in the object.
The way REMODE works, is that for an area of samples
in the image, it estimates the uncertainty and make sure it
converges to a particular value. When we tried this out for
a corridor in the Helicopter Lab, it failed. We made use of
ORB-SLAM which was working fine, provided the camera
motion were slow enough, and we avoided patches of clear
white walls, which tricked the feature mapping present in
ORB-SLAM. The attached loop closure for the complete
round of the lab is attached here. Correspondingly, the 3D
map of the entire area is also attached. You can see that
in areas where there were not enough features or different
camera angles, the REMODE algorithm failed to compute
depth map, and there are voids left in the map.

Finally, we turned to using the ZED camera. This is
a RGB-D camera which uses can give us per-pixel depth
information along with the RGB information as well. This
can work at 1280x760 pixels and generate a depth map
at approximately 30 FPS on a CUDA enabled GPU. We
applied ORB-SLAM on the input from the ZED camera,
and passed this to Octomap, which basically combined thse
values from this to create a 3D map of the entire space. This
worked well enough, but did not have a lot of visual appeal.

Finally, we used the library RTAB-Map to do this. It
was a SLAM library which was capable of performing loop
closures, as well as post processing operations such as mesh
smoothing and eliminating false odometry information.

VI. REALTIME ONBOARD PERFORMANCE USING
RTAB-MAP

This section needs to be completed once we perform this
on a real drone.

VII. FURTHER SCOPE

This mapping procedure can be used to autonomous
exploration of unknown environments, where the drone can
be attitude stabilized using an external controller. The drone
can also be made capable of performing guided way point
navigation with inputs provided from an external operator.

Progressing with these implementations, one can perform
3D SLAM of entire buildings and areas which can then



(a) ORB-SLAM performing loop closure

(b) REMODE fails with feature-less walls

Fig. 6: REMODE & ORB-SLAM tested in Helicopter Lab

be used to perform navigation and even find objects using
advanced 3D mesh segmentation techniques.

REFERENCES

[1] Christian Forster, Matia Pizzoli, and Davide Scara-
muzza. “SVO: Fast Semi-Direct Monocular Visual
Odometry”. In: IEEE International Conference on
Robotics and Automation (ICRA). 2014.

[2] Armin Hornung et al. “OctoMap: An Efficient Prob-
abilistic 3D Mapping Framework Based on Octrees”.
In: Autonomous Robots (2013). Software available at
http : / / octomap . github . com. DOI: 10 .
1007/s10514-012-9321-0. URL: http://
octomap.github.com.

[3] M. Labbfffdfffd and F. Michaud. “Appearance-Based
Loop Closure Detection for Online Large-Scale and
Long-Term Operation”. In: IEEE Transactions on
Robotics 29.3 (June 2013), pp. 734–745. ISSN: 1552-
3098. DOI: 10.1109/TRO.2013.2242375.

[4] M. Labbfffdfffd and F. Michaud. “Online global loop
closure detection for large-scale multi-session graph-
based SLAM”. In: 2014 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems. Sept. 2014,
pp. 2661–2666. DOI: 10 . 1109 / IROS . 2014 .
6942926.

[5] Raúl Mur-Artal and Juan D. Tardós. “ORB-SLAM2:
an Open-Source SLAM System for Monocular, Stereo
and RGB-D Cameras”. In: IEEE Transactions on
Robotics 33.5 (2017), pp. 1255–1262. DOI: 10 .
1109/TRO.2017.2705103.

[6] Matia Pizzoli, Christian Forster, and Davide Scara-
muzza. “REMODE: Probabilistic, Monocular Dense
Reconstruction in Real Time”. In: IEEE International
Conference on Robotics and Automation (ICRA). 2014.

http://octomap.github.com
http://dx.doi.org/10.1007/s10514-012-9321-0
http://dx.doi.org/10.1007/s10514-012-9321-0
http://octomap.github.com
http://octomap.github.com
http://dx.doi.org/10.1109/TRO.2013.2242375
http://dx.doi.org/10.1109/IROS.2014.6942926
http://dx.doi.org/10.1109/IROS.2014.6942926
http://dx.doi.org/10.1109/TRO.2017.2705103
http://dx.doi.org/10.1109/TRO.2017.2705103

	Introduction
	Literature Review
	Considerations and aims
	Hardware Configuration
	Implementations and Findings
	Realtime onboard performance using RTAB-Map
	Further scope

